Introduction to JHipster

Hackathon evening, September 2019

Orestis Palampougioukis




Problem

A lot of modern web apps have high complexity and
require:
Beautiful design
No page reloads
Ease and Speed of dep[oyment Large amOU.nt of teChnOIogieS WOfking in
Extensive testing sync to achieve all that => huge amount

.. _ of effort into configurations / setting up
Robustness and scalability of high-performance
servers and deployment process

Monitoring



JHIpster

Open source platform using Yeoman to generate /
develop / deploy Spring Boot + front-end web apps

CLI for initial app generation + subsequent additions of:
Entities (frontend + backend)
Relationships
Spring controllers
Spring services
Internationalization



Goal

A beautiful front-end, with the latest
HTML5/CSS3/JavaScript frameworks

A robust and high-quality back-end, with the latest
Java/Caching/Data access technologies

All automatically wired up, with security and
performance in mind

Great developer tooling, for maximum productivity



Client side

NPM dependency management to install and run client-side tools
Webpack
Compile, optimize, minimize

Efficient production builds

BrowserSync
Hot reload

Testing
Jest, Gatling, Cucumber, Protractor

Bootstrap

Angular / React



Server side

Spring Boot
Configured out of the box
Live reload

Maven / Gradle

Netflix OSS
Eureka - load balancing & failover
Zuul — Proxy for dynamic routing, monitoring, security
Ribbon — Software load balancing for services

Liquibase
DB source control




Server side

JPA (Java Persistence API), Spring Data JPA
MongoDB, Couchbase, Cassandra

Elasticsearch

Spring Security

Thymeleaf (Java templating)

Monitoring (JVM, app server, Spring Beans, Cache...)

Docker / Docker-compose fully pre-configured



Monitoring

Application Metrics

JVM Metrics

M emory Threads (Total: 40) SYSIE m
Runnable 15 .
PS Eden Space (245M / 1,277M) Uptime 20 seconds

Committed : 776M AT RN Start time 30/01/19 11:56:11

1% Timed Waiting (4) Process CPU usage 0%
Code Cache (22M / 240M) |
Committed : 23M Waiting (21) System CPU usage 9%
Compressed Class Space (10M / 1,024M) System CPU count 8
Committed : 11M Blocked (0) System 1m Load average 2

Process files max 1,048,576
PS Survivor Space (26M / 26M) Process files open 223
Committed : 26M

PS Old Gen (33M / 2,667TM)
Committed : 149M
Metaspace 76M

Committed : 80M

Garbage Collection

GC Live Data Size/GC Max Data Size (33M / 2,667M) GC Memory Promoted/GC Memory Allocated (18M / 1,329M) Classes loaded
N L Classes unloaded

p75

jvm.gc.pause

HTTP requests (time in milliseconds)

Total requests: 18

Code

401

200 AL AAMAARMAAMARAA L LTEV AR AL AR LAY
ANAN
L |

404

Ehcache statistics

Cache Name Cache Hits Cache Misses Cache Gets Cache Hit % Cache Miss %




Monitoring

Endpoints requests (time in millisecond)

Method Endpoint url Mean
GET /management/audits 71.006
GET /management/info 73.312
POST /management/loggers/{name} 4.424
POST fapifauthenticate 546.659
GET root 92.757
GET /management/health 20.766
GET /management/loggers 13.617
GET lapifaccount 42.089

GET P 47.853

Cache statistics

Cache name Cache Hits Cache Misses Cache Gets Cache Puts Cache Removals Cache Evictions Cache Hit % Cache Miss %
com.mycompany.myapp.domain.User

usersByEmail

usersByLogin

com.mycompany.myapp.domain.Authority

com.mycompany.myapp.domain.User.authorities

com.mycompany.myapp.domain. Teacher

DataSource statistics (time in millisecond)

Connection Pool Usage (active: 0, min: 10, max: 10, idle: 10)
Acquire
Creation

Usage




Deployment / Cloud

Kubernetes
Heroku

AWES
Boxfuse
Google cloud
OpenShift

CloudFoundry



Sub-generators

jhipster kubernetes
Answer a few questions

Done



Marketplace

Modules

Blueprints



Blueprints

Enhance JHipster with new features such as supproting different languages /
frameworks

Demonstrate how the main generator behavior can be modified to fit anyone’s
needs

Kotlin
Replaces most Java backend with Kotlin

Vue.js
Replaces frontend logic with Vue.js

.Net

Node.js
Replaces Java side with Nest.js framework



Opinion

Amazingly efficient for greenfield projects
Adhering to the generated structure matters

Cumbersome for projects that need to adhere to pre-
existing structure

Can still be very beneficial to setup the initial
configuration



o] f][e6




After dinner :)

Install Jhipster
https://www.jhipster.tech/installation/

Generate a JHipster project with your preferred initial set-up
https://www.jhipster.tech/creating-an-app/

Use the generator to create entities
https://www.jhipster.tech/creating-an-entity/

Create a Spring service
https://www.jhipster.tech/creating-a-spring-service/



https://www.jhipster.tech/installation/
https://www.jhipster.tech/creating-an-app/
https://www.jhipster.tech/creating-an-entity/
https://www.jhipster.tech/creating-a-spring-service/

	Slide 1
	Slide 2
	Presentation’s goal
	The need
	What is JHipster?
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Thank you all!!
	Slide 16

