
Reactive programming with Spring 
Webflux

Eonics Hack Night #21
João Esperancinha

joao.esperancinha@eonics.nl

mailto:joao.esperancinha@eonics.nl


Origins 1960
Jack Dennis:

● Data Flows concepts during the 1960’s at MIT
● Data stream concept and iteractions
● Data Flow years 1974 – 1975
● Roots in:

○ Asynchronous Digital Logic
○ Control Structures for Parallel Programming
○ Abstract Models for Concurrent Systems
○ Theory of Program Schemes
○ Structured Programming
○ Functional Programming

Ref: http://csg.csail.mit.edu/Dataflow/talks/DennisTalk.pdf

http://csg.csail.mit.edu/Dataflow/talks/DennisTalk.pdf


Origins 2010

Eric Meijer:

● Coined the term Reactive Programming in 2010
● Microsoft included C#, Visual Basic, LINQ, Volta
● Reactive programming framework 
● Reactive Extensions for .NET.
● Dataflow programming on steroids

Ref: https://channel9.msdn.com/Blogs/Charles/Erik-Meijer-Rx-in-15-Minutes

https://channel9.msdn.com/Blogs/Charles/Erik-Meijer-Rx-in-15-Minutes


Reactive Manifesto
Principles (applies to system and applications):

● Responsive
○ It needs to respond quickly. The time of the request itself is independent of this.

● Resilient
○ It must respond well and support Back-Pressure
○ Messages in control
○ Avoid catastrophic failure

● Elastic
○ Automatic Generation of resources. More threads in our case.

● Message Driven
○ Publisher/Subscriber

Ref: https://www.reactivemanifesto.org/

https://www.reactivemanifesto.org/


Spring WebFlux Basics
Observer Pattern 

Is a behavioral design pattern that lets you define a subscription mechanism to 
notify multiple objects about any events that happen to the object they’re 
observing.

In other words, we are going to do declarative programming instead of imperative 
programming.

Ref: https://en.wikipedia.org/wiki/Observer_pattern

https://en.wikipedia.org/wiki/Observer_pattern


Spring WebFlux Publishers
● Flux

○ A publisher for a stream of objects
○ Used to create lists of objects]
○ Processes one stream end to end
○ Handles stream events

● Mono
○ A publisher for a single object
○ Handles object events

Ref:https://docs.spring.io/spring/docs/current/spring-framework-reference/web-
reactive.html

Flux.just, Flux.from, Flux.fromIterable, 
Flux.fromArray, Flux.fromStream, 
Flux.zip

Mono.just, Mono.from, 
Mono.fromCallable, Mono.zip, 
Mono.fromFuture, Mono.fromDirect, 
Mono.fromRunnable

https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html


Spring WebFlux Parallelism

● Flux and ParallelFlux
○ .parallel(parallelism).runOn(Schedulers.parallel())

● Mono
○ .subscribeOn(Schedulers.parallel())

Ref:https://docs.spring.io/spring/docs/current/spring-framework-reference/web-
reactive.html

https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html


Blockhound
● Test Library
● Needs to be installed:

● Detects Blocking calls:

static {
BlockHound.install();

}

Mono.delay(Duration.ofMillis(1))
.doOnNext(it -> {

try {
catController.getCatByIdI(1L);

} catch (IOException e) {
throw new RuntimeException(e);

}
})
.block();



Concerts Project



Tests with JMeter
● Load tests
● Making the world a better place by registering thousands of Nicky Minajs 😉😉

{

"name": "Nicky Minaj",

"gender": "FEMALE",

"careerStart": 1000,

"birthDate": "a date",

"birthCity": "Port of Spain",

"country": "Trinidad en Tobago",

"keywords": "Rap"

}

X 1000 / s



Comparing Blocking MVC and Reactive MVC
Results of analysis of Response Times



Comparing Blocking MVC and Reactive MVC
Results of analysis of number of requests:

Label # Samples Average Min Max Std. Dev. Error % Throughput Received KB/sec Sent KB/sec Avg. Bytes

WebFlux GET artists 1818 1714 7 22403 2846.73 0.000% 39.69346 4512.75 5.31 116418.6

MVC Get Artists 1510 3320 7 16520 3516.68 0.066% 33.09589 5812.04 4.42 179826.8

WebFlux Post artists 1394 1425 4 14886 2597.78 0.000% 30.97984 10.26 12.49 339.1

MVC Post Artists 1179 2813 5 20344 3265.32 0.000% 26.18371 8.69 10.56 340.0

TOTAL 5901 2276 4 22403 3160.81 0.017% 128.35795 10282.47 32.26 82030.3



Let’s Code!
● Cat Care Center
● Bocco and Zuu have been found
● The application is blocking!
● Let’s make it reactive!
● Checkout the repo
● Checkout branch exercise
● Build will fail!
● Make the code reactive!
● Build will run! 

git clone 
https://jesperancinha@bitbucket.org/jesperancinha/eonics-
hacknight-webflux.git
git checkout exercise
mvn clean install

https://jesperancinha@bitbucket.org/jesperancinha/eonics-hacknight-webflux.git


Q?



References
● https://content.pivotal.io/springone-platform-2018/full-stack-reactive-with-react-and-spring-webflux
● https://bitbucket.org/jesperancinha/eonics-hacknight-webflux
● https://github.com/reactor/BlockHound
● https://github.com/jesperancinha/sea-shell-archiver
● https://github.com/jesperancinha/concert-demos-root
● http://csg.csail.mit.edu/Dataflow/talks/DennisTalk.pdf
● https://medium.com/swlh/comparing-webflux-and-spring-mvc-with-jmeter-79dc134c3c04
● https://medium.com/swlh/reactive-programming-applied-to-legacy-services-a-webflux-example-4d1c2ad40bd4
● https://en.wikipedia.org/wiki/Jack_Dennis
● https://www.reactivemanifesto.org/
● https://refactoring.guru/design-patterns/observer
● https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.csnip.org%2Fgeneral-

faqs&psig=AOvVaw1jPWBfSEBh65Oci1MZyq9E&ust=1582141566798000&source=images&cd=vfe&ved=0CAIQjRx
qFwoTCPiZyOPu2-cCFQAAAAAdAAAAABBI

● https://www.instagram.com/pechanko_bocco/?hl=nl

João Esperancinha joao.esperancinha@eonics.nl

https://content.pivotal.io/springone-platform-2018/full-stack-reactive-with-react-and-spring-webflux
https://bitbucket.org/jesperancinha/eonics-hacknight-webflux
https://github.com/reactor/BlockHound
https://github.com/jesperancinha/sea-shell-archiver
https://github.com/jesperancinha/concert-demos-root
http://csg.csail.mit.edu/Dataflow/talks/DennisTalk.pdf
https://medium.com/swlh/comparing-webflux-and-spring-mvc-with-jmeter-79dc134c3c04
https://medium.com/swlh/reactive-programming-applied-to-legacy-services-a-webflux-example-4d1c2ad40bd4
https://en.wikipedia.org/wiki/Jack_Dennis
https://www.reactivemanifesto.org/
https://refactoring.guru/design-patterns/observer
https://www.csnip.org/general-faqs
https://www.instagram.com/pechanko_bocco/?hl=nl
mailto:joao.esperancinha@eonics.nl

	Reactive programming with Spring Webflux
	Origins 1960
	Origins 2010
	Reactive Manifesto
	Spring WebFlux Basics
	Spring WebFlux Publishers
	Spring WebFlux Parallelism
	Blockhound
	Concerts Project
	Tests with JMeter
	Comparing Blocking MVC and Reactive MVC
	Comparing Blocking MVC and Reactive MVC
	Let’s Code!
	Slide Number 14
	References

