
17

P R E V I E W

Michel ten Voorde
Software Engineer Java

$ whoami

michel.tenvoorde@eonics.nl

1Z0-819 Certification @ Eonics

New in Java 12 - 15

● Java 17 (expected Sep 2021) will be a new LTS version.

● Not everything new can be covered…

● Since Java 11, a total of 43 JEPs have been added.

● The focus is developer-centered.

Files::mismatch

● Useful for determining if 2 files have the same content.
● By design, very similar to Arrays::mismatch.

Example:

long differAtPosition = Files.mismatch(path1, path2);

Compact Number Formatting

● Provides support for locale-sensitive compact number formatting
● 1000 becomes 1K (short style) or 1 thousand (long style)

Example:

NumberFormat compactFormatter = NumberFormat.getCompactNumberInstance(
 Locale.US, NumberFormat.Style.LONG);
String result = compactFormatter.format(9000);
System.out.println("It's over " + result + "!!!");

Outputs: It’s over nine thousand!!!

Switch Expressions

● Extends switch so it can be used both as a statement and
an expression.

● The statement syntax has been revamped, though the old one is
still available.

Example:
switch (LocalDate.now().getDayOfWeek()) {
 case MONDAY -> System.out.println("Sigh...");
 case TUESDAY, WEDNESDAY -> System.out.println("Hang in there...");
 case THURSDAY -> System.out.println("Almost there now..!");
 case FRIDAY -> System.out.println("Party time!");
}

Switch Expressions

● The expression syntax has the additional restriction that all input
paths must be covered. Most of the time*, this implies using the
default clause.

Example:

System.out.println(
 switch (interestingInt) {
 case 1 -> "One";
 case 2 -> "Two";
 default -> "Many";
 }
);

Pattern Matching for instanceof

● Adds pattern matching to the instanceof operator.
● Shortens the test - cast - declaration boilerplating.

Old:

if (obj instanceof Point) {
 Point p = (Point) obj;
 return x == p.x && y == p.y;
} else {
 return false;
}

New:

if (obj instanceof Point p) {
 return x == p.x && y == p.y;
} else {
 return false;
}

Helpful NullPointerExceptions

● Improves the usability of NullPointerExceptions by describing
which variable actually was null.

// c == null
System.out.println(a.b.c.d);

Old:
Exception in thread "main" java.lang.NullPointerException

New:
Exception in thread "main" java.lang.NullPointerException: Cannot read
field "d" because "a.b.c" is null

Text Blocks

● Adds a new multiline string literal to Java.
● Possibilities to customize whitespace removal (see exercices).

Old:
@Query("select c from Customer c " +
 "where c.country = :country " +
 "and c.active = 1 ")
)

New:
@Query("""

 select c from Customer c

 where c.country = :country

 and c.active = 1

 """)

Text Blocks

● New String::formatted method to simplify variable substitution.
● Basically, it’s the reverse of String::format.

Example:

String welcome = """

 Well

 hello

 there

 %s""".formatted(name);

Sealed Classes

● Sealed classes and interfaces restrict which other classes or
interfaces may extend or implement them.

● This makes it possible for a superclass to be accessible without
giving the ability to extend it.

Example:

public abstract sealed class Shape

 permits Triangle, Square, Circle {...}

Sealed Classes

● Permitted subclasses are restrained in that they:
○ have to directly extend the sealed class;
○ have to be in the same module or package;
○ have to declare how to continue the sealing initiated by its

superclass.
Example:
public final class Triangle extends Shape {...}

public sealed class Square extends Shape permits Rectangle {...}

public non-sealed class Circle extends Shape {...}

Records

● Records are immutable data classes that are defined only by the
type and name of its fields.

Example:
record Point(int x, int y) {}

● Everything else is generated by the compiler:
○ Corresponding private final fields
○ getters (without the get-prefix)
○ a constructor for all fields (a so-called canonical constructor)
○ equals, hashCode and toString

Demo source code

git clone https://github.com/MichelTenVoorde/java17-preview.git

Learn by playing around, breaking things, and having fun. :)

